The Mathematics That Can Predict Any Word in the Dictionary



---

The Mathematics That Can Predict Any Word in the Dictionary



---

🌐 Part 1: English Version

Introduction

A dictionary is not just a book of words; it is a universe of human language. But here’s a fascinating question: Is it possible to predict or identify any word in a dictionary just by using mathematics? Surprisingly, the answer is yes. Behind the scenes of search engines, artificial intelligence, and compression tools lies the magic of mathematics.

In this blog, we will explore the fascinating connection between mathematics and dictionaries—how words can be converted into numbers, how algorithms help us find them quickly, and how modern technology uses these mathematical tricks in everyday life.


---

1. Turning Words into Numbers: Encoding

Every letter can be represented by a number. For example, computers use ASCII or Unicode:

A = 65

B = 66

C = 67


So the word CAT can be written as (67, 65, 84). Thus, every word in the dictionary can be transformed into a unique sequence of numbers. This process is called encoding.


---

2. Combinatorics: Counting All Possible Words

Suppose the English alphabet has 26 letters. If we want to form all possible 5-letter combinations, the total would be:

26^5 = 11,881,376

This means that even before we open a dictionary, mathematics can map out every possible 5-letter “word.” With proper ordering, we can assign each possibility a unique position number—so every dictionary word is just a “number in disguise.”


---

3. Algorithms: Fast Searching

Finding words in a huge list is not easy. That’s where algorithms step in.

Linear Search: Checking one by one (slow).

Binary Search: Cutting the list in half each time (fast).


For example, if “ZEBRA” is the 10,000th entry, binary search helps us locate it in about 14 steps instead of 10,000. That’s the magic of logarithms at work!


---

4. Information Theory and Hash Functions

Mathematicians also use hashing—a function that converts words into unique fingerprints (numbers). Example:

cat → 298374

dog → 937462

dictionary → 1298347


Once you have the hash number, you can instantly identify the word without scanning the whole dictionary. This principle powers databases, password systems, and even blockchain.


---

5. Real-Life Applications

Search Engines: Google finds words using advanced encoding + search algorithms.

Data Compression: ZIP files store repeated words as short numeric codes.

Artificial Intelligence: Models like ChatGPT convert words into vectors (long sets of numbers).



---

6. Suggested Charts/Illustrations

A diagram showing “Word → ASCII numbers → Dictionary position.”

A binary search tree with “CAT” and “ZEBRA.”

A visual of hash values for different words.



---

7. Conclusion

The secret is simple: Words are numbers, and numbers follow mathematical rules. With encoding, combinatorics, algorithms, and hashing, any dictionary word can be predicted or located.


---

Disclaimer

This blog is for educational purposes only. The ideas presented are simplified for easy understanding.

---

🌐 Part 2: āĻŦাংāϞা āϏংāϏ্āĻ•āϰāĻŖ

āĻ­ূāĻŽিāĻ•া

āĻĄিāĻ•āĻļāύাāϰি āĻ•েāĻŦāϞ āĻļāĻŦ্āĻĻেāϰ āĻ­াāĻŖ্āĻĄাāϰ āύ⧟, āĻāϟি āĻ­াāώাāϰ āĻŽāĻšাāĻŦিāĻļ্āĻŦ। āĻ•িāύ্āϤু āĻāĻ•āϟি āĻ…āĻĻ্āĻ­ুāϤ āĻĒ্āϰāĻļ্āύ āĻšāϞো—āĻ—āĻŖিāϤেāϰ āϏাāĻšাāϝ্āϝে āĻ•ি āĻĄিāĻ•āĻļāύাāϰিāϰ āϝেāĻ•োāύো āĻļāĻŦ্āĻĻāĻ•ে āĻļāύাāĻ•্āϤ āĻ•āϰা āϏāĻŽ্āĻ­āĻŦ? āĻ…āĻŦিāĻļ্āĻŦাāϏ্āϝ āĻļোāύাāϞেāĻ“, āωāϤ্āϤāϰ āĻšāϞো āĻš্āϝাঁ।

āĻāχ āĻŦ্āϞāĻ—ে āφāĻŽāϰা āĻĻেāĻ–āĻŦ āĻ•ীāĻ­াāĻŦে āĻ—āĻŖিāϤ āĻĄিāĻ•āĻļāύাāϰিāϰ āϏাāĻĨে āϝুāĻ•্āϤ, āĻļāĻŦ্āĻĻāĻ•ে āϏংāĻ–্āϝা⧟ āϰূāĻĒাāύ্āϤāϰ āĻ•āϰা āϝা⧟, āĻĻ্āϰুāϤ āĻ–োঁāϜাāϰ āϜāύ্āϝ āĻ…্āϝাāϞāĻ—āϰিāĻĻāĻŽ āĻŦ্āϝāĻŦāĻšাāϰ āĻšā§Ÿ, āφāϰ āĻĒ্āϰāϝুāĻ•্āϤি āĻ•ীāĻ­াāĻŦে āĻāχ āĻ•ৌāĻļāϞ āĻ•াāϜে āϞাāĻ—া⧟।


---

ā§§. āĻļāĻŦ্āĻĻ āĻĨেāĻ•ে āϏংāĻ–্āϝা: āĻāύāĻ•োāĻĄিং

āĻĒ্āϰāϤিāϟি āĻ…āĻ•্āώāϰেāϰ āĻāĻ•āϟি āϏংāĻ–্āϝা āφāĻ›ে। āϝেāĻŽāύ ASCII/Unicode āĻ:

A = 65

B = 66

C = 67


āϤাāĻšāϞে CAT = (67, 65, 84)। āĻ…āϰ্āĻĨাā§Ž āĻĒ্āϰāϤিāϟি āĻļāĻŦ্āĻĻ āφāϏāϞে āĻāĻ•āϟি āϏংāĻ–্āϝা-āϧাāϰা⧟ āϰূāĻĒাāύ্āϤāϰāϝোāĻ—্āϝ।


---

⧍. āĻ•āĻŽ্āĻŦিāύেāϟāϰিāĻ•্āϏ: āϏāĻŽ্āĻ­াāĻŦ্āϝ āĻļāĻŦ্āĻĻ āĻ—āĻŖāύা

⧍ā§Ŧāϟি āĻ…āĻ•্āώāϰ āĻĻি⧟ে ā§Ģ āĻ…āĻ•্āώāϰেāϰ āϏāĻŦ āĻļāĻŦ্āĻĻ āĻ—āĻ āύ āĻ•āϰা āĻšāϞে āĻŽোāϟ āϏāĻŽ্āĻ­াāĻŦ্āϝāϤা:

26^5 = 11,881,376

āĻ…āϰ্āĻĨাā§Ž, āĻĄিāĻ•āĻļāύাāϰি āĻ–োāϞাāϰ āφāĻ—েāχ āĻ—āĻŖিāϤ āĻŦāϞে āĻĻে⧟—āϏāĻŦ āĻļāĻŦ্āĻĻ āĻ•োāĻĨা⧟ āĻ…āĻŦāϏ্āĻĨাāύ āĻ•āϰāĻ›ে।


---

ā§Š. āĻ…্āϝাāϞāĻ—āϰিāĻĻāĻŽ: āĻĻ্āϰুāϤ āĻ–োঁāϜাāϰ āĻ•ৌāĻļāϞ

āϞিāύি⧟াāϰ āϏাāϰ্āϚ: āĻāĻ•ে āĻāĻ•ে āĻ–োঁāϜা (āϧীāϰ)।

āĻŦাāχāύাāϰি āϏাāϰ্āϚ: āϤাāϞিāĻ•া āĻ…āϰ্āϧেāĻ• āĻ•āϰে āĻ­াāĻ— āĻ•āϰা (āĻĻ্āϰুāϤ)।


āϝেāĻŽāύ, “ZEBRA” āϝāĻĻি ā§§ā§Ļ,ā§Ļā§Ļā§ĻāϤāĻŽ āĻļāĻŦ্āĻĻ āĻšā§Ÿ, āĻŦাāχāύাāϰি āϏাāϰ্āϚে āϏেāϟি ā§§ā§Ē āϧাāĻĒেāχ āĻĒাāĻ“ā§Ÿা āϏāĻŽ্āĻ­āĻŦ।


---

ā§Ē. āϤāĻĨ্āϝāϤāϤ্āϤ্āĻŦ āĻ“ āĻš্āϝাāĻļ āĻĢাংāĻļāύ

āĻš্āϝাāĻļ āĻĢাংāĻļāύ āĻĒ্āϰāϤিāϟি āĻļāĻŦ্āĻĻāĻ•ে āĻāĻ•āϟি āĻ…āύāύ্āϝ āĻĢিāĻ™্āĻ—াāϰāĻĒ্āϰিāύ্āϟে āĻĒāϰিāĻŖāϤ āĻ•āϰে। āϝেāĻŽāύ:

cat → 298374

dog → 937462

dictionary → 1298347


āĻāĻ­াāĻŦে āĻļুāϧুāĻŽাāϤ্āϰ āĻš্āϝাāĻļ āϜাāύāϞেāχ āĻļāĻŦ্āĻĻāĻ•ে āĻļāύাāĻ•্āϤ āĻ•āϰা āϝা⧟।


---

ā§Ģ. āĻŦাāϏ্āϤāĻŦ āĻĒ্āϰ⧟োāĻ—

āϏাāϰ্āϚ āχāĻž্āϜিāύ: āĻ—ুāĻ—āϞ āĻāχ āĻ•ৌāĻļāϞ āĻŦ্āϝāĻŦāĻšাāϰ āĻ•āϰে āĻļāĻŦ্āĻĻ āĻ–ুঁāϜে āĻŦেāϰ āĻ•āϰে।

āĻĄাāϟা āĻ•āĻŽ্āĻĒ্āϰেāĻļāύ: ZIP āĻĢাāχāϞ āĻŦাāϰāĻŦাāϰ āφāϏা āĻļāĻŦ্āĻĻāĻ•ে āϏংāĻ–্āϝা āĻĻি⧟ে āϰাāĻ–ে।

āĻ•ৃāϤ্āϰিāĻŽ āĻŦুāĻĻ্āϧিāĻŽāϤ্āϤা: ChatGPT-āĻāϰ āĻŽāϤো āĻŽāĻĄেāϞ āĻļāĻŦ্āĻĻāĻ•ে āϏংāĻ–্āϝাāϰ āĻ­েāĻ•্āϟāϰে āϰূāĻĒাāύ্āϤāϰ āĻ•āϰে।



---

ā§Ŧ. āĻĒ্āϰāϏ্āϤাāĻŦিāϤ āϚাāϰ্āϟ

“āĻļāĻŦ্āĻĻ → āϏংāĻ–্āϝা → āĻĄিāĻ•āĻļāύাāϰি āĻ…āĻŦāϏ্āĻĨাāύ” āĻĄা⧟াāĻ—্āϰাāĻŽ।

āĻŦাāχāύাāϰি āϏাāϰ্āϚেāϰ āĻ—াāĻ›।

āĻš্āϝাāĻļ āĻ­্āϝাāϞুāϰ āωāĻĻাāĻšāϰāĻŖ।



---

ā§­. āωāĻĒāϏংāĻšাāϰ

āĻ—োāĻĒāύ āϰāĻšāϏ্āϝ āĻšāϞো: āĻļāĻŦ্āĻĻ āφāϏāϞে āϏংāĻ–্āϝা, āφāϰ āϏংāĻ–্āϝা āϚāϞে āĻ—āĻŖিāϤেāϰ āύি⧟āĻŽে। āĻāύāĻ•োāĻĄিং, āĻ•āĻŽ্āĻŦিāύেāϟāϰিāĻ•্āϏ, āĻ…্āϝাāϞāĻ—āϰিāĻĻāĻŽ āĻ“ āĻš্āϝাāĻļ āĻŦ্āϝāĻŦāĻšাāϰ āĻ•āϰেāχ āĻĄিāĻ•āĻļāύাāϰিāϰ āϝেāĻ•োāύো āĻļāĻŦ্āĻĻ āĻļāύাāĻ•্āϤ āĻ•āϰা āϝা⧟।


---

āĻĄিāϏāĻ•্āϞেāχāĻŽাāϰ

āĻāχ āϞেāĻ–া āĻļুāϧুāĻŽাāϤ্āϰ āĻļিāĻ•্āώাāĻŽূāϞāĻ• āωāĻĻ্āĻĻেāĻļ্āϝে। āϏāĻšāϜāĻ­াāĻŦে āĻŦোāĻাāύোāϰ āϜāύ্āϝ āĻŦ্āϝাāĻ–্āϝা āϏāϰāϞীāĻ•ৃāϤ।

---

🌐 Part 3: ā¤šिंā¤Ļी ⤏ं⤏्⤕⤰⤪

⤭ूā¤Žि⤕ा

ā¤Ąि⤕्ā¤ļ⤍⤰ी ⤕ेā¤ĩ⤞ ā¤ļā¤Ŧ्ā¤Ļों ⤕ा ⤭ंā¤Ąा⤰ ā¤¨ā¤šीं ā¤šै, ā¤¯ā¤š ⤭ा⤎ा ⤕ा ā¤Ŧ्ā¤°ā¤š्ā¤Žांā¤Ą ā¤šै। ⤞े⤕ि⤍ ⤏ā¤ĩा⤞ ā¤šै—⤕्⤝ा ⤗⤪ि⤤ ⤕ी ā¤Žā¤Ļā¤Ļ ⤏े ā¤Ąि⤕्ā¤ļ⤍⤰ी ⤕े ⤕ि⤏ी ⤭ी ā¤ļā¤Ŧ्ā¤Ļ ⤕ो ā¤Ēā¤šā¤šा⤍ा ⤜ा ⤏⤕⤤ा ā¤šै? ⤜ā¤ĩाā¤Ŧ ā¤šै ā¤šाँ।

⤇⤏ ā¤Ŧ्⤞ॉ⤗ ā¤Žें ā¤šā¤Ž ā¤Ļे⤖ें⤗े ⤕ि ⤗⤪ि⤤ ⤕ै⤏े ā¤ļā¤Ŧ्ā¤Ļों ⤕ो ⤏ं⤖्⤝ा ā¤Žें ā¤Ŧā¤Ļ⤞⤤ा ā¤šै, ⤕ै⤏े ā¤ā¤˛्⤗ो⤰िā¤Ļ्ā¤Ž ⤉⤍्ā¤šें ⤜⤞्ā¤Ļी ⤖ो⤜⤤ा ā¤šै, ⤔⤰ ⤤⤕⤍ी⤕ ⤇⤏े ⤰ो⤜़ā¤Žā¤°्⤰ा ⤕े ⤜ीā¤ĩ⤍ ā¤Žें ⤕ै⤏े ⤉ā¤Ē⤝ो⤗ ⤕⤰⤤ी ā¤šै।


---

1. ā¤ļā¤Ŧ्ā¤Ļ ⤏े ⤏ं⤖्⤝ा: ā¤ā¤¨ā¤•ोā¤Ąिं⤗

ā¤šā¤° ⤅⤕्⤎⤰ ⤕ी ā¤ā¤• ⤏ं⤖्⤝ा ā¤šो⤤ी ā¤šै। ASCII/Unicode ā¤Žें:

A = 65

B = 66

C = 67


⤤ो CAT = (67, 65, 84)। ⤝ा⤍ी ā¤šā¤° ā¤ļā¤Ŧ्ā¤Ļ ⤕ो ⤏ं⤖्⤝ा⤓ं ⤕ी ā¤ļ्⤰ृं⤖⤞ा ā¤Žें ā¤Ŧā¤Ļ⤞ा ⤜ा ⤏⤕⤤ा ā¤šै।


---

2. ⤕ॉā¤Ž्ā¤Ŧि⤍े⤟⤰ि⤕्⤏: ⤏ं⤭ाā¤ĩि⤤ ā¤ļā¤Ŧ्ā¤Ļों ⤕ी ⤗ि⤍⤤ी

26 ⤅⤕्⤎⤰ों ⤏े 5-⤅⤕्⤎⤰ ā¤ĩा⤞े ā¤ļā¤Ŧ्ā¤Ļ ā¤Ŧ⤍ा⤍े ā¤Ē⤰ ⤕ु⤞ ⤏ं⤭ाā¤ĩ⤍ाā¤ँ ā¤šों⤗ी:

26^5 = 11,881,376

⤝ा⤍ी ā¤Ąि⤕्ā¤ļ⤍⤰ी ⤖ो⤞े ā¤Ŧि⤍ा ā¤šी ⤗⤪ि⤤ ā¤Ŧ⤤ा ⤏⤕⤤ा ā¤šै ⤕ि ā¤ļā¤Ŧ्ā¤Ļ ā¤•ā¤šाँ ⤏्ā¤Ĩि⤤ ā¤šो⤗ा।


---

3. ā¤ā¤˛्⤗ो⤰िā¤Ļ्ā¤Ž: ⤤े⤜़ ⤖ो⤜

⤞ि⤍ि⤝⤰ ⤏⤰्⤚: ā¤ā¤•-ā¤ā¤• ⤕⤰⤕े ā¤Ļे⤖⤍ा (⤧ीā¤Žा)।

ā¤Ŧा⤇⤍⤰ी ⤏⤰्⤚: ⤏ू⤚ी ⤕ो ⤆⤧ा-⤆⤧ा ā¤Ŧाँ⤟⤍ा (⤤े⤜़)।


⤉ā¤Ļाā¤šā¤°ā¤Ŗ: “ZEBRA” ⤝ā¤Ļि 10,000ā¤ĩाँ ā¤ļā¤Ŧ्ā¤Ļ ā¤šै, ⤤ो ā¤Ŧा⤇⤍⤰ी ⤏⤰्⤚ ⤇⤏े ⤏ि⤰्ā¤Ģ 14 ⤚⤰⤪ों ā¤Žें ā¤ĸूँā¤ĸ ⤞े⤗ा।


---

4. ⤏ू⤚⤍ा ⤏िā¤Ļ्⤧ां⤤ ⤔⤰ ā¤šैā¤ļ ā¤Ģ़ं⤕्ā¤ļ⤍

ā¤šैā¤ļ ā¤Ģ़ं⤕्ā¤ļ⤍ ā¤šā¤° ā¤ļā¤Ŧ्ā¤Ļ ⤕ो ⤅⤍ो⤖े ā¤Ģिं⤗⤰ā¤Ē्⤰िं⤟ ā¤Žें ā¤Ŧā¤Ļ⤞ ā¤Ļे⤤ा ā¤šै:

cat → 298374

dog → 937462

dictionary → 1298347
 

ā¤šैā¤ļ ā¤ĩै⤞्⤝ू ⤏े ⤤ु⤰ं⤤ ā¤ļā¤Ŧ्ā¤Ļ ⤕ी ā¤Ēā¤šā¤šा⤍ ā¤šो ⤏⤕⤤ी ā¤šै।


---

5. ā¤ĩा⤏्⤤ā¤ĩि⤕ ⤉ā¤Ē⤝ो⤗

⤏⤰्⤚ ⤇ं⤜⤍: ⤗ू⤗⤞ ⤇⤍्ā¤šीं ⤤⤰ी⤕ों ⤏े ā¤ļā¤Ŧ्ā¤Ļ ⤖ो⤜⤤ा ā¤šै।

ā¤Ąे⤟ा ⤕ंā¤Ē्⤰ेā¤ļ⤍: ZIP ā¤Ģ़ा⤇⤞ ā¤Ŧा⤰-ā¤Ŧा⤰ ⤆⤍े ā¤ĩा⤞े ā¤ļā¤Ŧ्ā¤Ļों ⤕ो ⤏ं⤖्⤝ा⤓ं ā¤Žें ⤰⤖⤤ी ā¤šै।

⤕ृ⤤्⤰िā¤Ž ā¤Ŧुā¤Ļ्⤧िā¤Žā¤¤्⤤ा: ChatGPT ⤜ै⤏े ā¤Žॉā¤Ąā¤˛ ā¤ļā¤Ŧ्ā¤Ļों ⤕ो ⤏ं⤖्⤝ा⤓ं ⤕े ā¤ĩे⤕्⤟⤰ ā¤Žें ā¤Ŧā¤Ļ⤞⤤े ā¤šैं।



---

6. ⤏ुā¤ाā¤ĩि⤤ ⤚ा⤰्⤟

“ā¤ļā¤Ŧ्ā¤Ļ → ⤏ं⤖्⤝ा → ā¤Ąि⤕्ā¤ļ⤍⤰ी ⤏्ā¤Ĩा⤍” ⤆⤰े⤖।

ā¤Ŧा⤇⤍⤰ी ⤏⤰्⤚ ⤟्⤰ी।

⤅⤞⤗-⤅⤞⤗ ā¤ļā¤Ŧ्ā¤Ļों ⤕े ā¤šैā¤ļ ā¤ĩै⤞्⤝ू।



---

7. ⤍ि⤎्⤕⤰्⤎

⤅⤏⤞ ā¤°ā¤šā¤¸्⤝ ā¤¯ā¤šी ā¤šै: ā¤ļā¤Ŧ्ā¤Ļ ā¤ĩा⤏्⤤ā¤ĩ ā¤Žें ⤏ं⤖्⤝ा ā¤šैं, ⤔⤰ ⤏ं⤖्⤝ा ⤗⤪ि⤤ ⤕े ⤍िā¤¯ā¤Žों ⤕ा ā¤Ēा⤞⤍ ⤕⤰⤤ी ā¤šै। ā¤ā¤¨ā¤•ोā¤Ąिं⤗, ⤕ॉā¤Ž्ā¤Ŧि⤍े⤟⤰ि⤕्⤏, ā¤ā¤˛्⤗ो⤰िā¤Ļ्ā¤Ž ⤔⤰ ā¤šैā¤ļ ⤕ी ā¤Žā¤Ļā¤Ļ ⤏े ā¤Ąि⤕्ā¤ļ⤍⤰ी ⤕ा ⤕ो⤈ ⤭ी ā¤ļā¤Ŧ्ā¤Ļ ā¤Ēā¤šā¤šा⤍ा ⤜ा ⤏⤕⤤ा ā¤šै।


---

ā¤Ąि⤏्⤕्⤞ेā¤Žā¤°

ā¤¯ā¤š ⤞े⤖ ⤕ेā¤ĩ⤞ ā¤ļै⤕्⤎ि⤕ ⤉ā¤Ļ्ā¤Ļेā¤ļ्⤝ ⤕े ⤞िā¤ ā¤šै। ā¤¸ā¤Žā¤ा⤍े ā¤Žें ⤆⤏ा⤍ी ā¤šे⤤ु ā¤ĩ्⤝ा⤖्⤝ा ⤏⤰⤞ ⤕ी ā¤—ā¤ˆ ā¤šै।


---

Comments

Popular posts from this blog

🌸 Blog Title: Understanding Geoffrey Chaucer and His Age — A Guide for 1st Semester English Honours Students at the University of Gour Banga111111111

English: Madhya Pradesh News Update October 2025 | Latest MP Government, Agriculture & Political DevelopmentsBengali: āĻŽāϧ্āϝāĻĒ্āϰāĻĻেāĻļ āφāĻĒāĻĄেāϟ āĻ…āĻ•্āϟোāĻŦāϰ ⧍ā§Ļ⧍ā§Ģ | āĻĒ্āϰāĻļাāϏāύ, āĻ•ৃāώি, āĻļিāĻ•্āώা āĻ“ āϰাāϜāύীāϤিHindi: ā¤Žā¤§्⤝ā¤Ē्⤰ā¤Ļेā¤ļ ā¤¸ā¤Žा⤚ा⤰ ⤅⤕्⤟ूā¤Ŧ⤰ 2025 | ā¤ļा⤏⤍, ⤕ृ⤎ि, ā¤ļि⤕्⤎ा ⤔⤰ ⤰ा⤜⤍ी⤤ि ⤕ी ⤤ा⤜़ा ⤜ा⤍⤕ा⤰ी

Bihar Election 2025: Mahagathbandhan’s Seat Projection, Exit Poll Analysis, and Voter Psychology