The Mathematics That Can Predict Any Word in the Dictionary
---
The Mathematics That Can Predict Any Word in the Dictionary
---
đ Part 1: English Version
Introduction
A dictionary is not just a book of words; it is a universe of human language. But here’s a fascinating question: Is it possible to predict or identify any word in a dictionary just by using mathematics? Surprisingly, the answer is yes. Behind the scenes of search engines, artificial intelligence, and compression tools lies the magic of mathematics.
In this blog, we will explore the fascinating connection between mathematics and dictionaries—how words can be converted into numbers, how algorithms help us find them quickly, and how modern technology uses these mathematical tricks in everyday life.
---
1. Turning Words into Numbers: Encoding
Every letter can be represented by a number. For example, computers use ASCII or Unicode:
A = 65
B = 66
C = 67
So the word CAT can be written as (67, 65, 84). Thus, every word in the dictionary can be transformed into a unique sequence of numbers. This process is called encoding.
---
2. Combinatorics: Counting All Possible Words
Suppose the English alphabet has 26 letters. If we want to form all possible 5-letter combinations, the total would be:
26^5 = 11,881,376
This means that even before we open a dictionary, mathematics can map out every possible 5-letter “word.” With proper ordering, we can assign each possibility a unique position number—so every dictionary word is just a “number in disguise.”
---
3. Algorithms: Fast Searching
Finding words in a huge list is not easy. That’s where algorithms step in.
Linear Search: Checking one by one (slow).
Binary Search: Cutting the list in half each time (fast).
For example, if “ZEBRA” is the 10,000th entry, binary search helps us locate it in about 14 steps instead of 10,000. That’s the magic of logarithms at work!
---
4. Information Theory and Hash Functions
Mathematicians also use hashing—a function that converts words into unique fingerprints (numbers). Example:
cat → 298374
dog → 937462
dictionary → 1298347
Once you have the hash number, you can instantly identify the word without scanning the whole dictionary. This principle powers databases, password systems, and even blockchain.
---
5. Real-Life Applications
Search Engines: Google finds words using advanced encoding + search algorithms.
Data Compression: ZIP files store repeated words as short numeric codes.
Artificial Intelligence: Models like ChatGPT convert words into vectors (long sets of numbers).
---
6. Suggested Charts/Illustrations
A diagram showing “Word → ASCII numbers → Dictionary position.”
A binary search tree with “CAT” and “ZEBRA.”
A visual of hash values for different words.
---
7. Conclusion
The secret is simple: Words are numbers, and numbers follow mathematical rules. With encoding, combinatorics, algorithms, and hashing, any dictionary word can be predicted or located.
---
Disclaimer
This blog is for educational purposes only. The ideas presented are simplified for easy understanding.
---
đ Part 2: āĻŦাংāϞা āϏংāϏ্āĻāϰāĻŖ
āĻূāĻŽিāĻা
āĻĄিāĻāĻļāύাāϰি āĻেāĻŦāϞ āĻļāĻŦ্āĻĻেāϰ āĻাāĻŖ্āĻĄাāϰ āύā§, āĻāĻি āĻাāώাāϰ āĻŽāĻšাāĻŦিāĻļ্āĻŦ। āĻিāύ্āϤু āĻāĻāĻি āĻ
āĻĻ্āĻুāϤ āĻĒ্āϰāĻļ্āύ āĻšāϞো—āĻāĻŖিāϤেāϰ āϏাāĻšাāϝ্āϝে āĻি āĻĄিāĻāĻļāύাāϰিāϰ āϝেāĻোāύো āĻļāĻŦ্āĻĻāĻে āĻļāύাāĻ্āϤ āĻāϰা āϏāĻŽ্āĻāĻŦ? āĻ
āĻŦিāĻļ্āĻŦাāϏ্āϝ āĻļোāύাāϞেāĻ, āĻāϤ্āϤāϰ āĻšāϞো āĻš্āϝাঁ।
āĻāĻ āĻŦ্āϞāĻে āĻāĻŽāϰা āĻĻেāĻāĻŦ āĻীāĻাāĻŦে āĻāĻŖিāϤ āĻĄিāĻāĻļāύাāϰিāϰ āϏাāĻĨে āϝুāĻ্āϤ, āĻļāĻŦ্āĻĻāĻে āϏংāĻ্āϝাā§ āϰূāĻĒাāύ্āϤāϰ āĻāϰা āϝাā§, āĻĻ্āϰুāϤ āĻোঁāĻাāϰ āĻāύ্āϝ āĻ
্āϝাāϞāĻāϰিāĻĻāĻŽ āĻŦ্āϝāĻŦāĻšাāϰ āĻšā§, āĻāϰ āĻĒ্āϰāϝুāĻ্āϤি āĻীāĻাāĻŦে āĻāĻ āĻৌāĻļāϞ āĻাāĻে āϞাāĻাā§।
---
ā§§. āĻļāĻŦ্āĻĻ āĻĨেāĻে āϏংāĻ্āϝা: āĻāύāĻোāĻĄিং
āĻĒ্āϰāϤিāĻি āĻ
āĻ্āώāϰেāϰ āĻāĻāĻি āϏংāĻ্āϝা āĻāĻে। āϝেāĻŽāύ ASCII/Unicode āĻ:
A = 65
B = 66
C = 67
āϤাāĻšāϞে CAT = (67, 65, 84)। āĻ
āϰ্āĻĨাā§ āĻĒ্āϰāϤিāĻি āĻļāĻŦ্āĻĻ āĻāϏāϞে āĻāĻāĻি āϏংāĻ্āϝা-āϧাāϰাā§ āϰূāĻĒাāύ্āϤāϰāϝোāĻ্āϝ।
---
⧍. āĻāĻŽ্āĻŦিāύেāĻāϰিāĻ্āϏ: āϏāĻŽ্āĻাāĻŦ্āϝ āĻļāĻŦ্āĻĻ āĻāĻŖāύা
⧍ā§ŦāĻি āĻ
āĻ্āώāϰ āĻĻিā§ে ā§Ģ āĻ
āĻ্āώāϰেāϰ āϏāĻŦ āĻļāĻŦ্āĻĻ āĻāĻ āύ āĻāϰা āĻšāϞে āĻŽোāĻ āϏāĻŽ্āĻাāĻŦ্āϝāϤা:
26^5 = 11,881,376
āĻ
āϰ্āĻĨাā§, āĻĄিāĻāĻļāύাāϰি āĻোāϞাāϰ āĻāĻেāĻ āĻāĻŖিāϤ āĻŦāϞে āĻĻেā§—āϏāĻŦ āĻļāĻŦ্āĻĻ āĻোāĻĨাā§ āĻ
āĻŦāϏ্āĻĨাāύ āĻāϰāĻে।
---
ā§Š. āĻ
্āϝাāϞāĻāϰিāĻĻāĻŽ: āĻĻ্āϰুāϤ āĻোঁāĻাāϰ āĻৌāĻļāϞ
āϞিāύিā§াāϰ āϏাāϰ্āĻ: āĻāĻে āĻāĻে āĻোঁāĻা (āϧীāϰ)।
āĻŦাāĻāύাāϰি āϏাāϰ্āĻ: āϤাāϞিāĻা āĻ
āϰ্āϧেāĻ āĻāϰে āĻাāĻ āĻāϰা (āĻĻ্āϰুāϤ)।
āϝেāĻŽāύ, “ZEBRA” āϝāĻĻি ā§§ā§Ļ,ā§Ļā§Ļā§ĻāϤāĻŽ āĻļāĻŦ্āĻĻ āĻšā§, āĻŦাāĻāύাāϰি āϏাāϰ্āĻে āϏেāĻি ā§§ā§Ē āϧাāĻĒেāĻ āĻĒাāĻā§া āϏāĻŽ্āĻāĻŦ।
---
ā§Ē. āϤāĻĨ্āϝāϤāϤ্āϤ্āĻŦ āĻ āĻš্āϝাāĻļ āĻĢাংāĻļāύ
āĻš্āϝাāĻļ āĻĢাংāĻļāύ āĻĒ্āϰāϤিāĻি āĻļāĻŦ্āĻĻāĻে āĻāĻāĻি āĻ
āύāύ্āϝ āĻĢিāĻ্āĻাāϰāĻĒ্āϰিāύ্āĻে āĻĒāϰিāĻŖāϤ āĻāϰে। āϝেāĻŽāύ:
cat → 298374
dog → 937462
dictionary → 1298347
āĻāĻাāĻŦে āĻļুāϧুāĻŽাāϤ্āϰ āĻš্āϝাāĻļ āĻাāύāϞেāĻ āĻļāĻŦ্āĻĻāĻে āĻļāύাāĻ্āϤ āĻāϰা āϝাā§।
---
ā§Ģ. āĻŦাāϏ্āϤāĻŦ āĻĒ্āϰā§োāĻ
āϏাāϰ্āĻ āĻāĻ্āĻিāύ: āĻুāĻāϞ āĻāĻ āĻৌāĻļāϞ āĻŦ্āϝāĻŦāĻšাāϰ āĻāϰে āĻļāĻŦ্āĻĻ āĻুঁāĻে āĻŦেāϰ āĻāϰে।
āĻĄাāĻা āĻāĻŽ্āĻĒ্āϰেāĻļāύ: ZIP āĻĢাāĻāϞ āĻŦাāϰāĻŦাāϰ āĻāϏা āĻļāĻŦ্āĻĻāĻে āϏংāĻ্āϝা āĻĻিā§ে āϰাāĻে।
āĻৃāϤ্āϰিāĻŽ āĻŦুāĻĻ্āϧিāĻŽāϤ্āϤা: ChatGPT-āĻāϰ āĻŽāϤো āĻŽāĻĄেāϞ āĻļāĻŦ্āĻĻāĻে āϏংāĻ্āϝাāϰ āĻেāĻ্āĻāϰে āϰূāĻĒাāύ্āϤāϰ āĻāϰে।
---
ā§Ŧ. āĻĒ্āϰāϏ্āϤাāĻŦিāϤ āĻাāϰ্āĻ
“āĻļāĻŦ্āĻĻ → āϏংāĻ্āϝা → āĻĄিāĻāĻļāύাāϰি āĻ
āĻŦāϏ্āĻĨাāύ” āĻĄাā§াāĻ্āϰাāĻŽ।
āĻŦাāĻāύাāϰি āϏাāϰ্āĻেāϰ āĻাāĻ।
āĻš্āϝাāĻļ āĻ্āϝাāϞুāϰ āĻāĻĻাāĻšāϰāĻŖ।
---
ā§. āĻāĻĒāϏংāĻšাāϰ
āĻোāĻĒāύ āϰāĻšāϏ্āϝ āĻšāϞো: āĻļāĻŦ্āĻĻ āĻāϏāϞে āϏংāĻ্āϝা, āĻāϰ āϏংāĻ্āϝা āĻāϞে āĻāĻŖিāϤেāϰ āύিā§āĻŽে। āĻāύāĻোāĻĄিং, āĻāĻŽ্āĻŦিāύেāĻāϰিāĻ্āϏ, āĻ
্āϝাāϞāĻāϰিāĻĻāĻŽ āĻ āĻš্āϝাāĻļ āĻŦ্āϝāĻŦāĻšাāϰ āĻāϰেāĻ āĻĄিāĻāĻļāύাāϰিāϰ āϝেāĻোāύো āĻļāĻŦ্āĻĻ āĻļāύাāĻ্āϤ āĻāϰা āϝাā§।
---
āĻĄিāϏāĻ্āϞেāĻāĻŽাāϰ
āĻāĻ āϞেāĻা āĻļুāϧুāĻŽাāϤ্āϰ āĻļিāĻ্āώাāĻŽূāϞāĻ āĻāĻĻ্āĻĻেāĻļ্āϝে। āϏāĻšāĻāĻাāĻŦে āĻŦোāĻাāύোāϰ āĻāύ্āϝ āĻŦ্āϝাāĻ্āϝা āϏāϰāϞীāĻৃāϤ।
---
đ Part 3: ā¤šिंā¤Ļी ⤏ं⤏्ā¤ā¤°ā¤Ŗ
ā¤ूā¤Žिā¤ा
ā¤Ąिā¤्ā¤ļ⤍⤰ी ā¤ेā¤ĩ⤞ ā¤ļā¤Ŧ्ā¤Ļों ā¤ा ā¤ंā¤Ąा⤰ ā¤¨ā¤šीं ā¤šै, ā¤¯ā¤š ā¤ा⤎ा ā¤ा ā¤Ŧ्ā¤°ā¤š्ā¤Žांā¤Ą ā¤šै। ⤞ेā¤ि⤍ ⤏ā¤ĩा⤞ ā¤šै—ā¤्⤝ा ā¤ā¤Ŗि⤤ ā¤ी ā¤Žā¤Ļā¤Ļ ⤏े ā¤Ąिā¤्ā¤ļ⤍⤰ी ā¤े ā¤ि⤏ी ā¤ी ā¤ļā¤Ŧ्ā¤Ļ ā¤ो ā¤Ēā¤šā¤ा⤍ा ā¤ा ⤏ā¤ā¤¤ा ā¤šै? ā¤ā¤ĩाā¤Ŧ ā¤šै ā¤šाँ।
ā¤ā¤¸ ā¤Ŧ्⤞ॉā¤ ā¤Žें ā¤šā¤Ž ā¤Ļेā¤ेंā¤े ā¤ि ā¤ā¤Ŗि⤤ ā¤ै⤏े ā¤ļā¤Ŧ्ā¤Ļों ā¤ो ⤏ंā¤्⤝ा ā¤Žें ā¤Ŧā¤Ļ⤞⤤ा ā¤šै, ā¤ै⤏े ā¤ā¤˛्ā¤ो⤰िā¤Ļ्ā¤Ž ā¤ā¤¨्ā¤šें ā¤ā¤˛्ā¤Ļी ā¤ोā¤ā¤¤ा ā¤šै, ā¤ā¤° ⤤ā¤ā¤¨ी⤠ā¤ā¤¸े ⤰ोā¤़ā¤Žā¤°्⤰ा ā¤े ā¤ीā¤ĩ⤍ ā¤Žें ā¤ै⤏े ā¤ā¤Ē⤝ो⤠ā¤ā¤°ā¤¤ी ā¤šै।
---
1. ā¤ļā¤Ŧ्ā¤Ļ ⤏े ⤏ंā¤्⤝ा: ā¤ā¤¨ā¤ोā¤Ąिंā¤
ā¤šā¤° ā¤
ā¤्⤎⤰ ā¤ी ā¤ā¤ ⤏ंā¤्⤝ा ā¤šो⤤ी ā¤šै। ASCII/Unicode ā¤Žें:
A = 65
B = 66
C = 67
⤤ो CAT = (67, 65, 84)। ⤝ा⤍ी ā¤šā¤° ā¤ļā¤Ŧ्ā¤Ļ ā¤ो ⤏ंā¤्⤝ाā¤ं ā¤ी ā¤ļ्⤰ृंā¤ā¤˛ा ā¤Žें ā¤Ŧā¤Ļ⤞ा ā¤ा ⤏ā¤ā¤¤ा ā¤šै।
---
2. ā¤ॉā¤Ž्ā¤Ŧि⤍ेā¤ā¤°िā¤्⤏: ⤏ंā¤ाā¤ĩि⤤ ā¤ļā¤Ŧ्ā¤Ļों ā¤ी ā¤ि⤍⤤ी
26 ā¤
ā¤्⤎⤰ों ⤏े 5-ā¤
ā¤्⤎⤰ ā¤ĩा⤞े ā¤ļā¤Ŧ्ā¤Ļ ā¤Ŧ⤍ा⤍े ā¤Ē⤰ ā¤ु⤞ ⤏ंā¤ाā¤ĩ⤍ाā¤ँ ā¤šोंā¤ी:
26^5 = 11,881,376
⤝ा⤍ी ā¤Ąिā¤्ā¤ļ⤍⤰ी ā¤ो⤞े ā¤Ŧि⤍ा ā¤šी ā¤ā¤Ŗि⤤ ā¤Ŧ⤤ा ⤏ā¤ā¤¤ा ā¤šै ā¤ि ā¤ļā¤Ŧ्ā¤Ļ ā¤ā¤šाँ ⤏्ā¤Ĩि⤤ ā¤šोā¤ा।
---
3. ā¤ā¤˛्ā¤ो⤰िā¤Ļ्ā¤Ž: ⤤ेā¤़ ā¤ोā¤
⤞ि⤍ि⤝⤰ ⤏⤰्ā¤: ā¤ā¤-ā¤ā¤ ā¤ā¤°ā¤े ā¤Ļेā¤ā¤¨ा (⤧ीā¤Žा)।
ā¤Ŧाā¤ā¤¨ā¤°ी ⤏⤰्ā¤: ⤏ूā¤ी ā¤ो ā¤ā¤§ा-ā¤ā¤§ा ā¤Ŧाँā¤ā¤¨ा (⤤ेā¤़)।
ā¤ā¤Ļाā¤šā¤°ā¤Ŗ: “ZEBRA” ⤝ā¤Ļि 10,000ā¤ĩाँ ā¤ļā¤Ŧ्ā¤Ļ ā¤šै, ⤤ो ā¤Ŧाā¤ā¤¨ā¤°ी ⤏⤰्⤠ā¤ā¤¸े ⤏ि⤰्ā¤Ģ 14 ā¤ā¤°ā¤Ŗों ā¤Žें ā¤ĸूँā¤ĸ ⤞ेā¤ा।
---
4. ⤏ूā¤ā¤¨ा ⤏िā¤Ļ्⤧ां⤤ ā¤ā¤° ā¤šैā¤ļ ā¤Ģ़ंā¤्ā¤ļ⤍
ā¤šैā¤ļ ā¤Ģ़ंā¤्ā¤ļ⤍ ā¤šā¤° ā¤ļā¤Ŧ्ā¤Ļ ā¤ो ā¤
⤍ोā¤े ā¤Ģिंā¤ā¤°ā¤Ē्⤰िंā¤ ā¤Žें ā¤Ŧā¤Ļ⤞ ā¤Ļे⤤ा ā¤šै:
cat → 298374
dog → 937462
dictionary → 1298347
ā¤šैā¤ļ ā¤ĩै⤞्⤝ू ⤏े ⤤ु⤰ं⤤ ā¤ļā¤Ŧ्ā¤Ļ ā¤ी ā¤Ēā¤šā¤ा⤍ ā¤šो ⤏ā¤ā¤¤ी ā¤šै।
---
5. ā¤ĩा⤏्⤤ā¤ĩि⤠ā¤ā¤Ē⤝ोā¤
⤏⤰्⤠ā¤ंā¤ā¤¨: ā¤ूā¤ā¤˛ ā¤ā¤¨्ā¤šीं ⤤⤰ीā¤ों ⤏े ā¤ļā¤Ŧ्ā¤Ļ ā¤ोā¤ā¤¤ा ā¤šै।
ā¤Ąेā¤ा ā¤ंā¤Ē्⤰ेā¤ļ⤍: ZIP ā¤Ģ़ाā¤ā¤˛ ā¤Ŧा⤰-ā¤Ŧा⤰ ā¤ā¤¨े ā¤ĩा⤞े ā¤ļā¤Ŧ्ā¤Ļों ā¤ो ⤏ंā¤्⤝ाā¤ं ā¤Žें ⤰ā¤ā¤¤ी ā¤šै।
ā¤ृ⤤्⤰िā¤Ž ā¤Ŧुā¤Ļ्⤧िā¤Žā¤¤्⤤ा: ChatGPT ā¤ै⤏े ā¤Žॉā¤Ąā¤˛ ā¤ļā¤Ŧ्ā¤Ļों ā¤ो ⤏ंā¤्⤝ाā¤ं ā¤े ā¤ĩेā¤्ā¤ā¤° ā¤Žें ā¤Ŧā¤Ļ⤞⤤े ā¤šैं।
---
6. ⤏ुā¤ाā¤ĩि⤤ ā¤ा⤰्ā¤
“ā¤ļā¤Ŧ्ā¤Ļ → ⤏ंā¤्⤝ा → ā¤Ąिā¤्ā¤ļ⤍⤰ी ⤏्ā¤Ĩा⤍” ā¤ā¤°ेā¤।
ā¤Ŧाā¤ā¤¨ā¤°ी ⤏⤰्⤠ā¤्⤰ी।
ā¤
⤞ā¤-ā¤
⤞⤠ā¤ļā¤Ŧ्ā¤Ļों ā¤े ā¤šैā¤ļ ā¤ĩै⤞्⤝ू।
---
7. ⤍ि⤎्ā¤ā¤°्⤎
ā¤
⤏⤞ ā¤°ā¤šā¤¸्⤝ ā¤¯ā¤šी ā¤šै: ā¤ļā¤Ŧ्ā¤Ļ ā¤ĩा⤏्⤤ā¤ĩ ā¤Žें ⤏ंā¤्⤝ा ā¤šैं, ā¤ā¤° ⤏ंā¤्⤝ा ā¤ā¤Ŗि⤤ ā¤े ⤍िā¤¯ā¤Žों ā¤ा ā¤Ēा⤞⤍ ā¤ā¤°ā¤¤ी ā¤šै। ā¤ā¤¨ā¤ोā¤Ąिंā¤, ā¤ॉā¤Ž्ā¤Ŧि⤍ेā¤ā¤°िā¤्⤏, ā¤ā¤˛्ā¤ो⤰िā¤Ļ्ā¤Ž ā¤ā¤° ā¤šैā¤ļ ā¤ी ā¤Žā¤Ļā¤Ļ ⤏े ā¤Ąिā¤्ā¤ļ⤍⤰ी ā¤ा ā¤ो⤠ā¤ी ā¤ļā¤Ŧ्ā¤Ļ ā¤Ēā¤šā¤ा⤍ा ā¤ा ⤏ā¤ā¤¤ा ā¤šै।
---
ā¤Ąि⤏्ā¤्⤞ेā¤Žā¤°
ā¤¯ā¤š ⤞े⤠ā¤ेā¤ĩ⤞ ā¤ļैā¤्⤎ि⤠ā¤ā¤Ļ्ā¤Ļेā¤ļ्⤝ ā¤े ⤞िā¤ ā¤šै। ā¤¸ā¤Žā¤ा⤍े ā¤Žें ā¤ā¤¸ा⤍ी ā¤šे⤤ु ā¤ĩ्⤝ाā¤्⤝ा ⤏⤰⤞ ā¤ी ā¤ā¤ ā¤šै।
---
Comments
Post a Comment